If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-8y-195=0
a = 7; b = -8; c = -195;
Δ = b2-4ac
Δ = -82-4·7·(-195)
Δ = 5524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5524}=\sqrt{4*1381}=\sqrt{4}*\sqrt{1381}=2\sqrt{1381}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{1381}}{2*7}=\frac{8-2\sqrt{1381}}{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{1381}}{2*7}=\frac{8+2\sqrt{1381}}{14} $
| 3(3x+1)=−3(4x−5)+4x | | 4x2-15=85 | | 2/3x+9=-17 | | 4x-2=-x+13 | | 3x2+13=25 | | 0.3x-0.4=-0.3x+1,4 | | 2(x+)+2x=2(x+2) | | 2(x+)+2x=2(x+) | | x^2-11=89 | | 5x+4=3x+7=180 | | 2x-3=-3+4x | | 1/6x+2=5 | | -37(z)-23=z-(-20) | | (6a+7)/(2a-1)+4/3=0 | | ((6a+7)/(2a-1))+4/3=0 | | C-6=5x+10 | | x4+-4x3+-10x2+28x+-15=0 | | x+2/10=2/3 | | 7(3x+8)=21x-10 | | 5x-2x+7=31 | | -7w-12=30 | | x2-11=89 | | -4-12v=68 | | (5x+4)(5x-6)=0 | | 5x5=3 | | 12x+8=12x-7 | | (5+3z)(3+5z+9z^2)=0 | | 2(x-4)+8x=-2(4x-5)+12 | | 4x+3+7x=36 | | x+x+x+1/2x=441 | | m/5+4=9 | | -5n+17=4n+11) |